九五彩票|手机app下载

教師介紹

教師介紹

當前位置: 九五彩票|手机app下载 > 教師介紹 > 正文

仝殿民

發布日期:2018-01-19   點擊量:
                   基本信息
姓名
仝殿民
職稱
教授
Email
tdm@sdu.edu.cn
電話
13688638430
地址
250100 濟南市山大南路27號 山東大學物理學院
其它主頁地址


                    學習經歷
1978.10-1982.07 山東大學物理系,獲學士學位;
1987.09-1990.07 吉林大學物理系理論物理專業,獲碩士學位;
1991.09-1994.07 吉林大學物理系理論物理專業,獲博士學位九五彩票|手机app下载。


                    工作經歷
工作經歷
1982.08-1985.12 中國科學院光電技術研究所,研究實習員;
1986.01-1987.08, 1990.09-1991.08 煙臺大學物理系,助教;
1994.09-2007.09 山東師范大學物理系,教授、博士生導師;
2007.09-今 山東大學物理學院,教授、博士生導師九五彩票|手机app下载。

1994年晉升為教授,2009年晉升教授二級崗, 2013年起為泰山學者特聘教授。


                    工作介紹
本人及所在的山東大學物理學院量子信息組主要從事量子信息的物理基礎研究,過去幾年,我們在量子物理基礎理論、量子信息、數學物理等多個研究領域完成了一些具有國際影響的工作。代表性成果:
1)提出了開放系統的幾何相理論(PRL93,080405,2004),為幾何相在開放系統的應用奠定了基礎,所給公式已成為計算混態幾何相的基本依據被廣泛應用于各類物理體系。該理論所確定的幾何相位被加拿大Laflamme組的實驗證實(PRL105,240406,2010);
2)證明了通常哈密頓量H(t)的本征值、本征函數描述的量化絕熱條件的非充分性(PRL95,110407,2005)九五彩票|手机app下载,并在后續的工作中進一步確立了其性質和應用范圍(PRL98,150402,2007;PRL104,120401,2010)。 該絕熱條件非充分性的理論結果被中科大杜江峰組的實驗證實(PRL101,060403,2008);
3)提出了非絕熱Holonomy量子計算理論,并應用于開放系統普適量子門的設計(NJP14,103035,2012;PRL109,170501,2012;PRA89,042302,2014)。該理論旨在克服量子系統的控制誤差和退相干問題——這是實現量子計算所面臨的主要挑戰九五彩票|手机app下载。該理論已被清華大學龍桂魯組(PRL110,190501,2013)、蘇黎世理工與加州理工的聯合組獨立的兩個實驗證實(Nature496,482,2013);
4)發現了Kochen-Specker(KS)不等式和一般Noncontextuality (NC)不等式的共存性。KS和NC不等式被用于論證量子體系是否存在隱變量、以澄清量子力學的完備性。這一發現及其嚴謹的證明已被審稿人被推薦為Rapid Communications.在PRA發表(PRA89,010101(R),2014)。
5) 提出了關于準對角密度矩陣相干性度量的可加性公理假定,并證明了基于相對熵測量的相干性完全凍結定理。關于該工作的兩篇論文都被推薦為Rapid Communications發表在PRA(PRA93,060303(R),2016;PRA94,060302(R),2016).

除上述代表性成果外,我們還完成了一些其他有影響的工作,如,辮子群的不可約表示理論已被寫入多本專著和研究生教材,并獲山東省科技進步一等獎;高維密集編碼量子通信方案作為高密編碼領域的首個方案,SCI他引260多次。近幾年,6篇論文發表在PRL上九五彩票|手机app下载,研究成果SCI他引1300余次,引用雜志包括Nature九五彩票|手机app下载、Science九五彩票|手机app下载、PRL和著名評論刊物Rev. Mod. Phys.九五彩票|手机app下载、Phys. Rep.等九五彩票|手机app下载。研究成果先后獲得山東省科技進步一等獎、教育部自然科學一等獎九五彩票|手机app下载、國家自然科學二等獎。


                    代表性論文
作為第一和通信作者6篇PRL、3篇PRA Rapid Communication,30篇PRA。

1. C. L. Liu, Yan-Qing Guo, D. M. Tong
Enhancing coherence of a state by stochastic strictly incoherent operations
Phys. Rev. A 96, 062325 (2017)
2. P. Z. Zhao, Xiao-Dan Cui, G. F. Xu, Erik Sj?qvist, D. M. Tong
Rydberg-atom-based scheme of nonadiabatic geometric quantum computation
Phys. Rev. A 96, 052316 (2017)
3. P. Z. Zhao, G. F. Xu, Q. M. Ding, Erik Sj?qvist, D. M. Tong
Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces
Phys. Rev. A 95, 062310 (2017)
4. G. F. Xu, P. Z. Zhao, D. M. Tong, Erik Sj?qvist
Robust paths to realize nonadiabatic holonomic gates
Phys. Rev. A 95, 052349 (2017)
5. G. F. Xu, P. Z. Zhao, T. H. Xing, Erik Sj¨oqvist, D. M. Tong,
Composite nonadiabatic holonomic quantum computation
Phys. Rev. A 95, 032311 (2017)
6. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong
Universal freezing of asymmetry
Phys. Rev. A 95, 022323 (2017)
7. Xiao-Dong Yu, Da-Jian Zhang, G. F. Xu, D. M. Tong
Alternative framework for quantifying coherence
Phys. Rev. A 94 (2016) 060302 (Rapid Communications).
8. Pei-Zi Zhao, G F Xu, D M Tong
Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases
Phys. Rev. A 94 (2016) 062327.
9. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong
General approach to find steady-state manifolds in Markovian and non-Markovian systems
Phys. Rev. A 94 (2016) 052132.
10. Xiao-Dong Yu, Da-Jian Zhang, C. L. Liu, D. M. Tong
Measure-independent freezing of quantum coherence
Phys. Rev. A 93 (2016) 060303 (Rapid Communications).
11. Da-Jian Zhang, Hua-Lin Huang, D. M. Tong1
Non-Markovian quantum dissipative processes with the same positive features as Markovian dissipative processes
Phys. Rev. A 93 (2016) 012117.
12. G. F. Xu, C. L. Liu, P. Z. Zhao, D. M. Tong
Nonadiabatic holonomic gates realized by a single-shot implementation
Phys. Rev. A 92 (2015) 052302.
13. J. Zhang, Thi Ha Kyaw, D. M. Tong, Erik Sj?qvist, L. C. Kwek
Fast non-Abelian geometric gates via transitionless quantum driving
Sci. Rep. 5, 18414 (2015).
14. Xiao-Dong Yu, Yan-Qing Guo, D M Tong
A proof of the Kochen–Specker theorem can always be converted to a state-independent noncontextuality inequality
New J. Phys. 17 (2015) 093001.
15. Da-Jian Zhang, Xiao-Dong Yu, D M Tong
Theorem on the existence of a non-zero energy gap in adiabatic quantum computation
Phys. Rev. A 90(2014)042321.
16. Long-Jiang Liu, D M Tong
Completely positive maps within the framework of direct-sum decomposition of state space
Phys. Rev. A 90(2014)012305.
17. X D Yu, D M Tong
Coexistence of Kochen-Specker inequalities and noncontextuality inequalities
Phys. Rev. A 89(2014)010101 (Rapid Communications).
18. J. Zhang, L C Kwek, E Sjoqvist, D M Tong, P Zanardi
Quantum computation in noiseless subsystems with fast non-Abelian holonomies
Phys. Rev. A 89(2014)042302.
19. G F Xu, J Zhang, D M Tong, E Sjoqvist, L C Kwek,
Nonadiabatic holonomic quantum computation in decoherence-free subspaces
Phys. Rev. Lett, 109(2012)170501.
20. E Sjoqvist,D M Tong, L M Andersson, B Hessmo, M Johansson, K Singh
Non-adiabatic holonomic quantum computation
New J phys., 14(2012)103035
21. M Johansson, E Sjoqvist, L M Andersson, M Ericsson, B Hessmo, K Singh, D M Tong
Robustness of nonadiabatic holonomic gates
Phys. Rev. A 86(2012)062322
22. D M Tong,
Reply to comments on quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation
Phys. Rev. Lett 106 (2011)138903.
23. X J Fan, Z B Liu, Y Liang, K N Jia, D M Tong,
Phase control of probe response in a Doppler-broadened N-type four-level system
Phys. Rev. A 83(2011)043805.
24. D M Tong
Quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation
Phys. Rev. Lett., 104(2010) 12:120401
25. C W Niu, G F Xu, L J Liu, L Kang, D M Tong, L C Kwek,
Separable states and geometric phases of an interacting two-spin system
Phys. Rev. A, 81(2010)1:012116
26. S Yin, D M Tong
Geometric phase of a quantum dot system in nonunitary evolution
Phys. Rev. A 79 (2009)4: 044303
27. C S Guo, L L Lu , G X Wei, J L He, D M Tong
Diffractive imaging based on a multipinhole plate
Optics Letters 34(2009)12:1813
28. D M Tong, K. Singh, L C Kwek, C H Oh
Sufficiency Criterion for the Validity of the Adiabatic Approximation
Phys. Rev. Lett., 98(2007)15:150402
29. X X Yi, D M Tong, L C Wang, L C Kwek, and C. H. Oh
Geometric phase in open systems: Beyond the Markov approximation and weak-coupling limit
Phys. Rev. A, 73(2006)052103.
30. D M Tong, K. Singh, L C Kwek, C H Oh
Quantitative conditions do not guarantee the validity of the adiabatic approximation
Phys. Rev. Lett., 95(2005)11:110407
31. D M Tong, E. Sjoqvist, S. Filipp, L C Kwek, C H Oh
Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed
Phys. Rev. A 71(2005)032106
32. D M Tong, E. Sjoqvist, L C Kwek, C H Oh
Kinematic approach to geometric phase of mixed states under nonunitary evolutions
Phys. Rev. Lett., 93(2004)8:080405
33. D M Tong, L C Kwek, C H Oh, J L Chen, and L Ma
Operator-sum representation of time-dependent density operators
Phys. Rev. A, 69(2004)054102
34. D M Tong, J L Chen, L C Kwek, C. H. Lai, and C H Oh
General formalism of Hamiltonians for realizing a prescribed evolution of a qubit
Phys. Rev. A, 68(2003)062307
35. D M Tong, E. Sjoqvist, L C Kwek, C H Oh and M Ericsson
Relation between the geometric phases of the entangled biparticle system and their subsystems
Phys. Rev. A, 68(2003)022106
36. K Sigh, D M Tong, K Basu, J L Chen and J F Du
Geometric phase for non-degenerate and degenerate mixed states
Phys. Rev. A, 67(2003)3:032106
37. S X Liu, G L Long, D M Tong and Feng Li
General scheme for superdense coding between multiparties
Phys. Rev. A, 65(2002)02


上一條:王磊

下一條:田玉峰

地址:山東省濟南市山大南路27號   郵編:250100

電話:(86)-531-88377032   傳真:(86)-531-88377032

  • 物微志信
  • 物院儀器設備公共平臺
  • 物說新語

                                  九五彩票|手机app下载 优信彩票|手机app下载 四川快乐12走势图 山西21选5开奖结果 168彩票|手机app下载 快乐彩票|手机app下载 豪彩vip|官网登录 国民彩票|手机app下载 九州体育|官网登录 缅甸真人百家le 澳发彩票|手机app下载 黑龙江福彩p62走势图 合乐彩票|官网登录 95彩票|官网登录 新疆福彩18选7开奖结果 广东11选5开奖结果